DISTRIBUTION / WHAT IS THE DISTRIBUTION / NOTES OF DISTRIBUTION / KDT NOTES OF PHARMACOLOGY
DISTRIBUTION
Once a drug has gained access to the blood stream, it gets distributed to other tissues that initially had no drug, concentration gradient being in the direction of plasma to tissues. The extent of distribution of a drug and its pattern of tissue distribution depends on its:
• lipid solubility
• ionization at physiological pH (a function of its pKa)
• extent of binding to plasma and tissue proteins
• presence of tissue-specific transporters
• differences in regional blood flow.
Movement of drug proceeds until an equilibrium is established between unbound drug in the plasma and the tissue fluids. Subsequently, there is a parallel decline in both due to elimination. Apparent volume of distribution (V) Presuming that the body behaves as a single homogeneous compartment with volume V into which the drug gets immediately and uniformly distributed
Since in the example shown in Fig. 2.8, the drug does not actually distribute into 20 L of body water, with the exclusion of the rest of it, this is only an apparent volume of distribution which can be defined as “the volume that would accommodate all the drug in the body, if the concentration throughout was the same as in plasma”. Thus, it describes amount of the drug present in the body as a multiple of that contained in a unit volume of plasma. Considered together with drug clearance, this is a very useful pharmacokinetic concept. Lipid-insoluble drugs do not enter cells— V approximates extracellular fluid volume, e.g. streptomycin, gentamicin 0.25 L/kg. Distribution is not only a matter of dilution, but also binding and sequestration. Drugs extensively bound to plasma proteins are largely
restricted to the vascular compartment and have low values of V, e.g. diclofenac and warfarin (99% bound) V = 0.15 L/kg. A large value of V indicates that larger quantity of drug is present in extravascular tissue. Drugs sequestrated in other tissues may have, V much more than total body water or even body mass, e.g. digoxin 6 L/kg, propranolol 4 L/kg, morphine 3.5 L/kg, because most of the drug is present in other tissues, and plasma concentration is low. Therefore, in case of poisoning, drugs with large volumes of distribution are not easily removed by haemodialysis. Pathological states, e.g. congestive heart failure, uraemia, cirrhosis of liver, etc. can alter the V of many drugs by altering distribution of body water, permeability of membranes, binding proteins or by accumulation of metabolites that displace the drug from binding sites. More precise multiple compartment models for drug distribution have been worked out, but the single compartment model, described above, is simple and fairly accurate for many drugs
Redistribution
Highly lipid-soluble drugs get initially distributed to organs with high blood flow, i.e. brain, heart, kidney, etc. Later, less vascular but more bulky tissues (muscle, fat) take up the drug—plasma concentration falls and the drug is withdrawn from the highly perfused sites. If the site of action of the drug was in one of the highly perfused organs, redistribution results in termination of drug action. Greater the lipid solubility of the drug, faster is its redistribution.
Anaesthetic action of thiopentone sod. injected i.v. is terminated in few minutes due to redistribution. A relatively short hypnotic action lasting 6–8 hours is exerted by oral diazepam or nitrazepam due to redistribution despite their elimination t½ of > 30 hr. However, when the same drug is given repeatedly or continuously over long periods, the low perfusion high capacity sites get progressively filled up and the drug becomes longer acting.
Penetration into brain and CSF
The capillary endothelial cells in brain have tight junctions and lack large paracellular spaces. Further, an investment of neural tissue (Fig. 2.9B) covers the capillaries. Together they constitute the so called blood-brain barrier (BBB). A similar blood CSF barrier is located in the choroid plexus: capillaries are lined by choroidal epithelium having tight junctions. Both these barriers are lipoidal and limit the entry of nonlipid-soluble drugs, e.g. streptomycin, neostigmine, etc. Only lipid-soluble drugs, therefore, are able to penetrate and have action on the central nervous system. In addition, efflux transporters like P-gp and anion transporter (OATP) present in brain and choroidal vessels extrude many drugs that enter brain by other processes and serve to augment the protective barrier against potentially harmful xenobiotics. Dopamine does not enter brain but its precursor levodopa does; as such,
Movement of drug proceeds until an equilibrium is established between unbound drug in the plasma and the tissue fluids. Subsequently, there is a parallel decline in both due to elimination. Apparent volume of distribution (V) Presuming that the body behaves as a single homogeneous compartment with volume V into which the drug gets immediately and uniformly distributed
Since in the example shown in Fig. 2.8, the drug does not actually distribute into 20 L of body water, with the exclusion of the rest of it, this is only an apparent volume of distribution which can be defined as “the volume that would accommodate all the drug in the body, if the concentration throughout was the same as in plasma”. Thus, it describes amount of the drug present in the body as a multiple of that contained in a unit volume of plasma. Considered together with drug clearance, this is a very useful pharmacokinetic concept. Lipid-insoluble drugs do not enter cells— V approximates extracellular fluid volume, e.g. streptomycin, gentamicin 0.25 L/kg. Distribution is not only a matter of dilution, but also binding and sequestration. Drugs extensively bound to plasma proteins are largely
restricted to the vascular compartment and have low values of V, e.g. diclofenac and warfarin (99% bound) V = 0.15 L/kg. A large value of V indicates that larger quantity of drug is present in extravascular tissue. Drugs sequestrated in other tissues may have, V much more than total body water or even body mass, e.g. digoxin 6 L/kg, propranolol 4 L/kg, morphine 3.5 L/kg, because most of the drug is present in other tissues, and plasma concentration is low. Therefore, in case of poisoning, drugs with large volumes of distribution are not easily removed by haemodialysis. Pathological states, e.g. congestive heart failure, uraemia, cirrhosis of liver, etc. can alter the V of many drugs by altering distribution of body water, permeability of membranes, binding proteins or by accumulation of metabolites that displace the drug from binding sites. More precise multiple compartment models for drug distribution have been worked out, but the single compartment model, described above, is simple and fairly accurate for many drugs
Redistribution
Highly lipid-soluble drugs get initially distributed to organs with high blood flow, i.e. brain, heart, kidney, etc. Later, less vascular but more bulky tissues (muscle, fat) take up the drug—plasma concentration falls and the drug is withdrawn from the highly perfused sites. If the site of action of the drug was in one of the highly perfused organs, redistribution results in termination of drug action. Greater the lipid solubility of the drug, faster is its redistribution.
Anaesthetic action of thiopentone sod. injected i.v. is terminated in few minutes due to redistribution. A relatively short hypnotic action lasting 6–8 hours is exerted by oral diazepam or nitrazepam due to redistribution despite their elimination t½ of > 30 hr. However, when the same drug is given repeatedly or continuously over long periods, the low perfusion high capacity sites get progressively filled up and the drug becomes longer acting.
Penetration into brain and CSF
The capillary endothelial cells in brain have tight junctions and lack large paracellular spaces. Further, an investment of neural tissue (Fig. 2.9B) covers the capillaries. Together they constitute the so called blood-brain barrier (BBB). A similar blood CSF barrier is located in the choroid plexus: capillaries are lined by choroidal epithelium having tight junctions. Both these barriers are lipoidal and limit the entry of nonlipid-soluble drugs, e.g. streptomycin, neostigmine, etc. Only lipid-soluble drugs, therefore, are able to penetrate and have action on the central nervous system. In addition, efflux transporters like P-gp and anion transporter (OATP) present in brain and choroidal vessels extrude many drugs that enter brain by other processes and serve to augment the protective barrier against potentially harmful xenobiotics. Dopamine does not enter brain but its precursor levodopa does; as such,
Leave a Comment